Electrical devices designed based on inorganic clusters

Nanotechnology. 2022 Oct 7;33(50). doi: 10.1088/1361-6528/ac8f4e.

Abstract

The idea of exploring the bottom brink of material science has been carried out for more than two decades. Clusters science is the frontmost study of all nanoscale structures. Being an example of 0-dimensional quantum dot, nanocluster serves as the bridge between atomic and conventionally understood solid-state physics. The forming mechanism of clusters is found to be the mutual effects of electronic and geometric configuration. It is found that electronic shell structure influences the properties and geometric structure of the cluster until its size becomes larger, where electronic effects submerge in geometric structure. The discrete electronic structures depend on the size and conformation of clusters, which can be controlled artificially for potential device applications. Especially, small clusters with a size of 1-2 nm, whose electronic states are possibly discrete enough to overcome thermal fluctuations, are expected to build a single-electron transistor with room temperature operation. However, exciting as the progress may be seen, cluster science still falls within the territory of merely the extension of atomic and molecular science. Its production rate limits the scientific and potential application research of nanoclusters. It is suggested in this review that the mass-produce ability without losing the atomic precision selectivity would be the milestone for nanoclusters to advance to material science.

Keywords: atomic precision; electrical devices; inorganic clusters.

Publication types

  • Review