Porosomes in uterine epithelial cells: Ultrastructural identification and characterization during early pregnancy

J Morphol. 2022 Nov;283(11):1381-1389. doi: 10.1002/jmor.21504. Epub 2022 Oct 7.

Abstract

Porosomes are plasma membrane structures in secretory cells that allow transient docking and/or partial fusion of vesicles during which they release their content then disengage. This is referred to as "kiss and run" exocytosis. During early pregnancy, at the time of receptivity, there is a high level of vesicle activity in uterine epithelial cells (UECs). One of the secretory pathways for these vesicles could be via porosomes, which have yet to be identified in UECs. This study identified porosomes in the apical plasma membrane of UECs for the first time. These structures were present on days 1, 5.5, and 6 of early pregnancy, where they likely facilitate partial secretion via "kiss and run" exocytosis. The porosomes were measured and quantified on days 1, 5.5, and 6, which showed there are significantly more porosomes on day 5.5 (receptive) compared to day 1 (nonreceptive) of pregnancy. This increase in porosome numbers may reflect major morphological and molecular changes in the apical plasma membrane at this time such as increased cholesterol and soluble NSF attachment protein receptor proteins, as these are structural and functional components of the porosome complex assembly. Porosomes were observed in both resting (inactive) and dilated (active) states on days 1, 5.5, and 6 of early pregnancy. Porosomes on day 5.5 are significantly more active than on day 1 as demonstrated by the dilation of their base diameter. Further two-way ANOVA analysis of base diameter in resting and dilated states found a significant increase in porosome activity in day 5.5 compared to day 1. This study therefore indicates an increase in the number and activity of porosomes at the time of uterine receptivity in the rat, revealing a mechanism by which the UECs modify the uterine luminal environment at this time.

Keywords: exocytosis; implantation; kiss and run; polarised membrane traffic; uterine receptivity; vesicles.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Membrane / metabolism
  • Cholesterol / metabolism
  • Epithelial Cells*
  • Exocytosis*
  • Female
  • Pregnancy
  • Rats
  • SNARE Proteins / metabolism

Substances

  • Cholesterol
  • SNARE Proteins