Nanomedicine and nanobiotechnology applications of magnetoelectric nanoparticles

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2023 Mar;15(2):e1849. doi: 10.1002/wnan.1849. Epub 2022 Sep 3.

Abstract

Unlike any other nanoparticles known to date, magnetoelectric nanoparticles (MENPs) can generate relatively strong electric fields locally via the application of magnetic fields and, vice versa, have their magnetization change in response to an electric field from the microenvironment. Hence, MENPs can serve as a wireless two-way interface between man-made devices and physiological systems at the molecular level. With the recent development of room-temperature biocompatible MENPs, a number of novel potential medical applications have emerged. These applications include wireless brain stimulation and mapping/recording of neural activity in real-time, targeted delivery across the blood-brain barrier (BBB), tissue regeneration, high-specificity cancer cures, molecular-level rapid diagnostics, and others. Several independent in vivo studies, using mice and nonhuman primates models, demonstrated the capability to deliver MENPs in the brain across the BBB via intravenous injection or, alternatively, bypassing the BBB via intranasal inhalation of the nanoparticles. Wireless deep brain stimulation with MENPs was demonstrated both in vitro and in vivo in different rodents models by several independent groups. High-specificity cancer treatment methods as well as tissue regeneration approaches with MENPs were proposed and demonstrated in in vitro models. A number of in vitro and in vivo studies were dedicated to understand the underlying mechanisms of MENPs-based high-specificity targeted drug delivery via application of d.c. and a.c. magnetic fields. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.

Keywords: magnetoelectric nanoparticles; multiferroic materials; multifunctional nanoparticles; neural stimulation; targeted drug delivery.

Publication types

  • Review
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Brain
  • Drug Delivery Systems
  • Mice
  • Nanomedicine* / methods
  • Nanoparticles* / therapeutic use
  • Nanotechnology / methods