Phosphorus additions imbalance terrestrial ecosystem C:N:P stoichiometry

Glob Chang Biol. 2022 Dec;28(24):7353-7365. doi: 10.1111/gcb.16417. Epub 2022 Sep 13.

Abstract

Carbon (C):nitrogen (N):phosphorus (P) stoichiometry in plants, soils, and microbial biomass influences productivity and nutrient cycling in terrestrial ecosystems. Anthropogenic inputs of P to ecosystems are increasing; however, our understanding of the impacts of P addition on terrestrial ecosystem C:N:P ratios remains elusive. By conducting a meta-analysis with 1413 paired observations from 121 publications, we showed that P addition significantly decreased plant, soil, and microbial biomass N:P and C:P ratios, but had negligible effects on C:N ratios. The reductions in N:P and C:P ratios became more evident as the P application rates and experimental duration increased. The P addition effects on terrestrial ecosystem C:N:P stoichiometry did not vary with ecosystem types or climates. Moreover, the responses of N:P and C:P ratios in soil and microbial biomass were associated with the responses of soil pH and fungi:bacteria ratios. Additionally, P additions increased net primary productivity, microbial biomass, soil respiration, N mineralization, and N nitrification, but decreased ammonium and nitrate contents. Decreases in plant N:P and C:P ratios were both negatively correlated to net primary productivity and soil respiration, but positively correlated to ammonium and nitrate contents; microbial biomass, soil respiration, ammonium contents, and nitrate contents all increased with declining soil N:P and C:P ratios. Our findings highlight that P additions could imbalance C:N:P stoichiometry and potentially impact the terrestrial ecosystem functions.

Keywords: ecological stoichiometry; ecosystem function; meta-analysis; microbial community; phosphorus fertilization.

Publication types

  • Meta-Analysis

MeSH terms

  • Ammonium Compounds*
  • Biomass
  • Carbon / chemistry
  • Ecosystem
  • Nitrates
  • Nitrogen / analysis
  • Phosphorus* / chemistry
  • Plants
  • Soil / chemistry
  • Soil Microbiology

Substances

  • Phosphorus
  • Nitrates
  • Nitrogen
  • Soil
  • Carbon
  • Ammonium Compounds