A four parallel laser-based simultaneous measurement method for 6-degrees-of-freedom errors of rigid body with translational motion

Rev Sci Instrum. 2022 Aug 1;93(8):085101. doi: 10.1063/5.0081682.

Abstract

The measurement of six-degrees-of-freedom (6-DOF) errors of rigid bodies can show the real and accurate spatial pose of those rigid bodies. It plays a major role in precision calibration, spacecraft docking, machining, assembly, etc. In this paper, a four parallel laser-based simultaneous measurement (FPL-SM) method is proposed for measuring 6-DOF errors of rigid bodies with translational motion. First, a FPL-SM device is introduced. Its four laser heads form a rectangle, which is perpendicular to the movement direction of the measured linear displacement. Second, identification formulas for all geometrical errors in rigid bodies with translational motion are presented based on the relative positions of the four lasers. Based on the readings of the four lasers, angular errors and corresponding straightness errors are calculated for the direction of motion around the other two linear motions. As the two parallel sides of the rectangle are in different planes, the straightness errors of the two planes are different. The rolling angular error in the direction is expressed as the difference between the straightness errors of the two planes divided by the distance between the two planes. Six fundamental errors for rigid bodies with translational motion are obtained by four lasers in a single setting of the device. For multiple rigid bodies with mutually perpendicular translational motion, the squareness error is calculated by fitting to the actual direction of motion. Finally, experiments were carried out on the SmartCNC_DRDT five-axis machine tool and 21 geometric errors were determined for three translational axes. Error compensation was carried out using the generated machine tool geometric error data to verify the effectiveness of the proposed FPL-SM method. In addition, geometric errors and thermal errors of the Z axis of the GTI-2740 machine tool are measured based on the FPL-SM method.