Modeling multi-opinion propagation in complex systems with heterogeneous relationships via Potts model on signed networks

Chaos. 2022 Aug;32(8):083101. doi: 10.1063/5.0084525.

Abstract

This paper investigates how the heterogenous relationships around us affect the spread of diverse opinions in the population. We apply the Potts model, derived from condensed matter physics on signed networks, to multi-opinion propagation in complex systems with logically contradictory interactions. Signed networks have received increasing attention due to their ability to portray both positive and negative associations simultaneously, while the Potts model depicts the coevolution of multiple states affected by interactions. Analyses and experiments on both synthetic and real signed networks reveal the impact of the topology structure on the emergence of consensus and the evolution of balance in a system. We find that, regardless of the initial opinion distribution, the proportion and location of negative edges in the signed network determine whether a consensus can be formed. The effect of topology on the critical ratio of negative edges reflects two distinct phenomena: consensus and the multiparty situation. Surprisingly, adding a small number of negative edges leads to a sharp breakdown in consensus under certain circumstances. The community structure contributes to the common view within camps and the confrontation (or alliance) between camps. The importance of inter- or intra-community negative relationships varies depending on the diversity of opinions. The results also show that the dynamic process causes an increase in network structural balance and the emergence of dominant high-order structures. Our findings demonstrate the strong effects of logically contradictory interactions on collective behaviors, and could help control multi-opinion propagation and enhance the system balance.