Maximizing synchronizability of networks with community structure based on node similarity

Chaos. 2022 Aug;32(8):083106. doi: 10.1063/5.0092783.

Abstract

In reality, numerous networks have a community structure characterized by dense intra-community connections and sparse inter-community connections. In this article, strategies are proposed to enhance synchronizability of such networks by rewiring a certain number of inter-community links, where the research scope is complete synchronization on undirected and diffusively coupled dynamic networks. First, we explore the effect of adding links between unconnected nodes with different similarity levels on network synchronizability and find that preferentially adding links between nodes with lower similarity can improve network synchronizability more than that with higher similarity, where node similarity is measured by our improved Asymmetric Katz (AKatz) and Asymmetric Leicht-Holme-Newman (ALHNII) methods from the perspective of link prediction. Additional simulations demonstrate that the node similarity-based link-addition strategy is more effective in enhancing network synchronizability than the node centrality-based methods. Furthermore, we apply the node similarity-based link-addition or deletion strategy as the valid criteria to the rewiring process of inter-community links and then propose a Node Similarity-Based Rewiring Optimization (NSBRO) algorithm, where the optimization process is realized by a modified simulated annealing technique. Simulations show that our proposed method performs better in optimizing synchronization of such networks compared with other centrality-based heuristic methods. Finally, simulations on the Rössler system indicate that the network structure optimized by the NSBRO algorithm also leads to better synchronizability of coupled oscillators.