[Collaborative monitoring network of ecologically fragile areas in China and its application in carrying capacity research]

Ying Yong Sheng Tai Xue Bao. 2022 Aug;33(8):2271-2278. doi: 10.13287/j.1001-9332.202208.026.
[Article in Chinese]

Abstract

Ecologically fragile areas account for more than 60% of land area in China. Global change and human activities are aggravating ecosystem degradation and reducing the carrying capacity of resources and environment. It is important to accurately quantify the carrying capacity of resources and environment in ecologically fragile areas to deal with the risk and challenge of global change and to speed up the construction of ecological civilization. How-ever, existing methods evaluating carrying capacity of resources and environment are difficult to reflect the transmission effect of ecosystem structures, processes and functions changes among resource, environment and carrying capacity. Therefore, it is essential to establish a field observation network and obtain the comprehensive data set of resource and environment elements-ecosystem structure, function and process-ecosystem carrying capacity for develo-ping the theory and evaluation method. We introduced the collaborative monitoring networks of flux and UAV photographing, including the thoughts, practice, and preliminary results in the study of ecosystem structure, process and function in the fragile ecosystems of China. Based on the achievements and progress, we proposed the application of collaborative monitoring networks in capacity evaluation.

生态脆弱区约占中国国土面积的60%以上,全球变化和人类活动导致该区域生态系统退化加剧,资源环境承载力降低。准确量化生态脆弱区资源环境承载力对于应对全球变化风险挑战和加快生态文明建设进程具有重要意义。然而,现有的区域资源环境承载力评估方法很难体现生态系统结构、过程和功能变化在资源环境要素与承载力之间的传导作用。因此,构建网络化的野外观测体系以及获取资源环境要素-生态系统结构功能和过程-生态系统承载力变化的综合数据集,是发展资源环境承载力理论和评估方法的必要途径。本文介绍了通量以及无人机协同监测网络,包括思路、实践以及其在生态脆弱区生态系统结构、过程和功能研究中取得的初步成果。同时,基于目前已取得的成果和进展展望了联网协同观测在承载力评估方面的应用。.

Keywords: UAV photographing; carrying capacity; collaborative monitoring network; flux measurement; grassland.

MeSH terms

  • China
  • Conservation of Natural Resources*
  • Ecosystem*
  • Human Activities
  • Humans