Accurate de novo design of membrane-traversing macrocycles

Cell. 2022 Sep 15;185(19):3520-3532.e26. doi: 10.1016/j.cell.2022.07.019. Epub 2022 Aug 29.

Abstract

We use computational design coupled with experimental characterization to systematically investigate the design principles for macrocycle membrane permeability and oral bioavailability. We designed 184 6-12 residue macrocycles with a wide range of predicted structures containing noncanonical backbone modifications and experimentally determined structures of 35; 29 are very close to the computational models. With such control, we show that membrane permeability can be systematically achieved by ensuring all amide (NH) groups are engaged in internal hydrogen bonding interactions. 84 designs over the 6-12 residue size range cross membranes with an apparent permeability greater than 1 × 10-6 cm/s. Designs with exposed NH groups can be made membrane permeable through the design of an alternative isoenergetic fully hydrogen-bonded state favored in the lipid membrane. The ability to robustly design membrane-permeable and orally bioavailable peptides with high structural accuracy should contribute to the next generation of designed macrocycle therapeutics.

Keywords: computational design; membrane permeability; oral bioavailability; peptide design.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Amides* / chemistry
  • Hydrogen
  • Hydrogen Bonding
  • Lipids
  • Peptides* / chemistry

Substances

  • Amides
  • Lipids
  • Peptides
  • Hydrogen