Biocomputational characterisation of MBO_200107 protein of Mycobacterium tuberculosis variant caprae: a molecular docking and simulation study

J Biomol Struct Dyn. 2023 Sep-Oct;41(15):7204-7223. doi: 10.1080/07391102.2022.2118167. Epub 2022 Aug 30.

Abstract

The principal objective of this study was to delineate the potentiality of the MBO_200107 protein from the Mycobacterium tuberculosis variant caprae in cancer research. It is a cytoplasmic protein, comprised of a 354-long amino acid chain, alkaline, had a molecular weight of 39089.37 Da, an isoelectric point of 9.62 and a grand average of hydropathicity of -0.345. One of the functional domains was predicted as Gammaglutamylcyclotransferase (GGCT). Among tertiary structures, the Modeller and Phyre2 model satisfied all the quality parameters, though they are truncated; contrarily, the I-TASSER model is full length and contains the sequence for the GGCT domain, though it did not meet all the quality parameters. It also has significant sequence similarities (47.5% by EMBOSS Water and 72.4% by EMBOSS Matcher) with a human GGCT, and the conserved sequences are confined to the GGCT domain of the MBO_200107. According to molecular docking analyses, the protein has a binding affinity of -4.8 kcal/mol by Autodock Vina and -56.465 kcal/mol by HPEPDOCK to the human glutathione (GSH), an essential metabolite for GGCT metabolism. The Molecular dynamic simulation of the docked complex showed the binding efficiency of the GSH to MBO_200107 with a minimal structural alteration. The in silico findings mentioned above revealed that the protein could be used as a supplementary tool in cancer research, such as designing vaccines or drugs where the role of GGCT has been implicated. Further, we recommend fully characterising the protein and conducting essential in vitro and in vivo experiments to determine its detailed usefulness.Communicated by Ramaswamy H. Sarma.

Keywords: MBO_200107 protein; Mycobacterium tuberculosis variant caprae; cancers; gammaglutamylcyclotransferase; glutathione.