Association Between Quantitative Diffusion-Weighted Magnetic Resonance Neuroimaging and Outcome After Pediatric Cardiac Arrest

Neurology. 2022 Dec 5;99(23):e2615-e2626. doi: 10.1212/WNL.0000000000201189.

Abstract

Background and objectives: Diffusion MRI can quantify the extent of hypoxic-ischemic brain injury after cardiac arrest. Our objective was to determine the association between the adult-derived threshold of apparent diffusion coefficient (ADC) <650 × 10-6 mm2/s in >10% of brain tissue and an unfavorable outcome after pediatric cardiac arrest. Since ADC decreases exponentially as a function of increasing age, we determined the association between (1) having >10% of brain tissue below a novel age-dependent ADC threshold, and (2) age-normalized whole-brain mean ADC and unfavorable outcome.

Methods: This was a retrospective study of patients aged ≤18 years who had cardiac arrest and a clinically obtained brain MRI within 7 days. The primary outcome was unfavorable neurologic status at hospital discharge based on the Pediatric Cerebral Performance Category score. ADC images were extracted from 3-direction diffusion imaging. We determined whether each patient had >10% of voxels with an ADC below prespecified thresholds. We computed the whole-brain mean ADC for each patient.

Results: One hundred thirty-four patients were analyzed. Patients with ADC <650 × 10-6 mm2/s in >10% of voxels had 15 times higher odds (95% CI 5-65) of an unfavorable outcome compared with patients with ADC <650 × 10-6 mm2/s (area under the receiver operating characteristic curve [AUROC] 0.72 [95% CI 0.63-0.80]). These ADC criteria had a sensitivity and specificity of 0.49 and 0.94, respectively, and positive and negative predictive values of 0.93 and 0.52, respectively, for an unfavorable outcome. The age-dependent ADC threshold that yielded optimal sensitivity and specificity for unfavorable outcomes was <300 × 10-6 mm2/s below each patient's predicted whole-brain mean ADC. The sensitivity, specificity, and positive and negative predictive values for this ADC threshold were 0.53, 0.96, 0.96, and 0.54, respectively (odds ratio [OR] 26.4 [95% CI 7.5-168.3]; AUROC 0.74 [95% CI 0.66-0.83]). Lower age-normalized whole-brain mean ADC was also associated with an unfavorable outcome (OR 0.42 [0.24-0.64], AUROC 0.76 [95% CI 0.66-0.82]).

Discussion: Quantitative diffusion thresholds on MRI within 7 days after cardiac arrest were associated with an unfavorable outcome in children. The age-independent ADC threshold was highly specific for predicting an unfavorable outcome. However, the specificity and sensitivity increased when using age-dependent ADC thresholds. Age-dependent ADC thresholds may improve prognostic accuracy and require further investigation in larger cohorts.

Classification of evidence: This study provides Class III evidence that quantitative diffusion-weighted imaging within 7 days postarrest can predict an unfavorable clinical outcome in children.

MeSH terms

  • Adult
  • Child
  • Diffusion Magnetic Resonance Imaging / methods
  • Heart Arrest* / complications
  • Heart Arrest* / diagnostic imaging
  • Humans
  • Magnetic Resonance Spectroscopy
  • Neuroimaging
  • Retrospective Studies