Enhanced Activities in Alkaline Hydrogen and Oxygen Evolution Reactions on MoS2 Electrocatalysts by In-Plane Sulfur Defects Coupled with Transition Metal Doping

Small. 2022 Sep;18(39):e2203173. doi: 10.1002/smll.202203173. Epub 2022 Aug 26.

Abstract

2D transition metal disulfides (TMDs) are promising and cost-effective alternatives to noble-metal-based catalysts for hydrogen production. Activation of the inert basal plane of TMDs is crucial to improving the catalytic efficiency. Herein, introduction of in-plane sulfur vacancies (Sv ) and 3d transition metal dopants in concert activates the basal planes of MoS2 (M-Sv -MoS2 ) to achieve high activities in the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Acetate introducing mild wet chemical etching removes surface S atoms facilitating subsequent cation exchange between the exposed Mo atoms and targeted metal ions in solution. Density-functional theory calculation demonstrates that the exposed 3d transition metal dopants in MoS2 basal planes serve as multifunctional active centers, which not only reduce ΔGH* but also accelerate water oxidation. As a result, the optimal Ni-Sv -MoS2 and Co-Sv -MoS2 electrocatalysts show excellent stability and alkaline HER and OER characteristics such as low overpotentials of 101 and 190 mV at 10 mA cm-2 , respectively. The results reveal a strategy to activate the inert MoS2 basal planes by defect and doping co-engineering and the technique can be extended to other types of TMDs for high-efficiency electrocatalysis beyond water splitting.

Keywords: MoS 2 basal plane; hydrogen evolution reaction; oxygen evolution reaction; sulfur vacancies; transition metal doping.