Static Electronic Density Response of Warm Dense Hydrogen: Ab Initio Path Integral Monte Carlo Simulations

Phys Rev Lett. 2022 Aug 5;129(6):066402. doi: 10.1103/PhysRevLett.129.066402.

Abstract

The properties of hydrogen under extreme conditions are important for many applications, including inertial confinement fusion and astrophysical models. A key quantity is given by the electronic density response to an external perturbation, which is probed in x-ray Thomson scattering experiments-the state of the art diagnostics from which system parameters like the free electron density n_{e}, the electronic temperature T_{e}, and the charge state Z can be inferred. In this work, we present highly accurate path integral Monte Carlo results for the static electronic density response of hydrogen. We obtain the static exchange-correlation (XC) kernel K_{XC}, which is of central relevance for many applications, such as time-dependent density functional theory. This gives us a first unbiased look into the electronic density response of hydrogen in the warm-dense matter regime, thereby opening up a gamut of avenues for future research.