Novel Composites of Poly(vinyl chloride) with Carbon Fibre/Carbon Nanotube Hybrid Filler

Materials (Basel). 2022 Aug 16;15(16):5625. doi: 10.3390/ma15165625.

Abstract

This article presents the results of studies of poly(vinyl chloride) (PVC) composites modified with a hybrid carbon filler of carbon fibres (CFs) and multiwalled carbon nanotubes (MWCNTs). The hybrid filler was produced by a solvent method, using poly(vinyl acetate) (PVAc) as an adhesive. The proportion of components in the hybrid filler with CF-CNT-PVAc was 50:2.5:1, respectively. The obtained hybrid filler was evaluated by SEM, TG, and Raman spectroscopy. The PVC composites were produced by extrusion with proportions of the hybrid filler as 1 wt%, 5 wt%, or 10 wt%. Thermal stability by the TG method, mechanical properties, and the glass transition temperature (Tg) by the DMA and DSC methods were determined. The composite structure was evaluated by SEM and Raman spectroscopy. The effect of the hybrid filler on electrical properties was investigated by studying the cross and surface resistivity. It was concluded that, aside from a substantial increase in the elastic modulus, no substantial improvement in the PVC/CF/CNT composites' mechanical properties was observed; however, slight increases in thermal stability and Tg were noted. The addition of the hybrid filler contributed to a substantial change in the composites' electrical properties. SEM observations demonstrated improved CNT dispersibility in the matrix, however, without a completely homogeneous coverage of CF by CNT.

Keywords: carbon fibre; hybrid filler; poly(vinyl chloride); polymer matrix composites (PMCs); properties.