Microstructure and Wear Resistance of a Composite Coating Prepared by Laser Alloying with Ni-Coated Graphite on Ti-6Al-4V Alloy

Materials (Basel). 2022 Aug 11;15(16):5512. doi: 10.3390/ma15165512.

Abstract

Titanium alloys are widely used in high-tech fields, while its disadvantages such as low hardness, high coefficient of friction and poor wear resistance have restricted its applications. This study focuses on improving the friction and wear resistance of Ti-6Al-4V titanium alloys by means of laser surface alloying with Ni-coated graphite (G@Ni). The results suggest that Ni acts as a protective layer to hinder the direct contact and reaction of C and Ti in the molten pool. A part of graphite is unmelted and finally remains to form a self-lubricating wear-resistant composite coating with a compact structure. The average hardness of the coating is approximately four times that of the substrate owing to the TiC hard phase and compact microstructures as the reinforcing phase. The residual graphite in the coating plays a friction-reduction role during the wear test. The wear resistance is increased to 8.53 times that of the substrate according to wear mass loss. This study can effectively enhance the performance and expand the application of the titanium alloys by improving the wear resistance and reducing the friction.

Keywords: laser surface alloying; nickel-coated graphite; solid-lubricating; titanium alloys; wear resistance.