mTOR: A Potential New Target in Nonalcoholic Fatty Liver Disease

Int J Mol Sci. 2022 Aug 16;23(16):9196. doi: 10.3390/ijms23169196.

Abstract

The global prevalence of nonalcoholic fatty liver disease (NAFLD) continues to rise, yet effective treatments are lacking due to the complex pathogenesis of this disease. Although recent research has provided evidence for the "multiple strikes" theory, the classic "two strikes" theory has not been overturned. Therefore, there is a crucial need to identify multiple targets in NAFLD pathogenesis for the development of diagnostic markers and targeted therapeutics. Since its discovery, the mechanistic target of rapamycin (mTOR) has been recognized as the central node of a network that regulates cell growth and development and is closely related to liver lipid metabolism and other processes. This paper will explore the mechanisms by which mTOR regulates lipid metabolism (SREBPs), insulin resistance (Foxo1, Lipin1), oxidative stress (PIG3, p53, JNK), intestinal microbiota (TLRs), autophagy, inflammation, genetic polymorphisms, and epigenetics in NAFLD. The specific influence of mTOR on NAFLD was hypothesized to be divided into micro regulation (the mechanism of mTOR's influence on NAFLD factors) and macro mediation (the relationship between various influencing factors) to summarize the influence of mTOR on the developmental process of NAFLD, and prove the importance of mTOR as an influencing factor of NAFLD regarding multiple aspects. The effects of crosstalk between mTOR and its upstream regulators, Notch, Hedgehog, and Hippo, on the occurrence and development of NAFLD-associated hepatocellular carcinoma are also summarized. This analysis will hopefully support the development of diagnostic markers and new therapeutic targets in NAFLD.

Keywords: hedgehog; hippo; mTOR; nonalcoholic fatty liver disease; notch; targeted therapy.

Publication types

  • Review

MeSH terms

  • Humans
  • Lipid Metabolism / genetics
  • Liver / metabolism
  • Liver Neoplasms* / metabolism
  • Non-alcoholic Fatty Liver Disease* / metabolism
  • TOR Serine-Threonine Kinases / genetics
  • TOR Serine-Threonine Kinases / metabolism

Substances

  • MTOR protein, human
  • TOR Serine-Threonine Kinases