uNGAL Predictive Value for Serum Creatinine Decrease in Critically Ill Children

Healthcare (Basel). 2022 Aug 19;10(8):1575. doi: 10.3390/healthcare10081575.

Abstract

Acute kidney injury (AKI) occurs frequently in critically ill children, having an incidence of up to 26.9% and is associated with high morbidity and mortality in pediatric intensive care units (PICU). Currently, the decrease in the glomerular filtration rate is calculated using the serum creatinine levels. Nevertheless, there may be a 48 h delay between the renal injury and measurable increase in creatinine. Urinary neutrophil gelatinase-associated lipocalin (uNGAL) has been validated in relation to cardiopulmonary bypass in children, being able to detect AKI before the functional change proven by the rise in serum creatinine. Our aim was to study the utility of using uNGAL in the management of critical pediatric patients admitted to our hospital in a six month period, more specifically, its capacity to predict AKI development, alone and in the association with the renal angina index (RAI). Twenty-eight critically ill children aged from 1 day to 15 years have been included. We found that an increase in uNGAL in day 1 of admission in the PICU was significantly correlated with a decrease in creatinine clearance but not anymore in day 3. However, in our sample uNGAL did not show a significant predictability for AKI development nor the supplementary incorporation of RAI into the prediction model. Therefore, apart from cardiac surgery, the efficacy and utility or uNGAL in the management of critically ill children is still questionable. For the best prediction, we will need to incorporate not only the RAI or other PICU scores, but other biomarkers such as KIM-1, urinary cystatin, and IL 18 in larger samples.

Keywords: PICU; acute kidney injury; children; uNGAL.

Grants and funding

The review is part of a research proposal, an internal grant GRANT IDEI ECHIPE, (Ideas–Teams), University of Medicine and Pharmacy Grigore T Popa Iasi, Romania, 27497/20 December 2018.