The Effects of the TSOL Knot on the Repair Strength and Gliding Resistance Following Flexor Tendon Repair

J Bone Joint Surg Am. 2022 Nov 16;104(22):2000-2007. doi: 10.2106/JBJS.21.01538. Epub 2022 Aug 23.

Abstract

Background: The stability of a suture knot construct has been realized as an important parameter that affects the strength of flexor tendon repairs. A novel 2-strand-overhand-locking (TSOL) knot, which is not commonly used in the clinical setting, recently was reported to increase repair strength and to decrease tendon gliding resistance in a 2-strand repair technique. The purpose of the present study was to investigate the effect of the TSOL knot on tendon repair strength and gliding resistance compared with a typical surgical knot in both 2-strand and 4-strand repair techniques using an in vitro turkey flexor tendon model.

Methods: Sixty flexor digitorum profundus tendons from the long digit of the turkey foot were divided evenly into 4 groups and repaired with the following techniques: (1) a 2-strand modified Pennington repair with a square knot, (2) a 2-strand modified Pennington repair with a TSOL knot, (3) a 4-strand grasping cruciate repair with a square knot, and (4) a 4-strand grasping cruciate repair with a TSOL knot. Repaired tendons were tested for failure mode, gliding resistance, and repair strength at failure.

Results: The repair strength and stiffness of the 4-strand repairs were significantly higher than those of the 2-strand repairs, regardless of knot type (p < 0.05). The repair strength at failure of the TSOL knot was significantly greater than that of the square knot in 2-strand repairs (p < 0.05) but not in 4-strand repairs. The gliding resistance of the TSOL knot was significantly decreased compared with that of the square knot in both 2-strand and 4-stand repairs (p < 0.05). With regard to failure mode, the TSOL knot was less likely to fail due to knot unravelling.

Conclusions: In this in vitro biomechanical study involving the use of turkey flexor tendons to compare gliding resistance and repair strength characteristics for knot-inside 2 and 4-strand repairs, the TSOL knot was associated with decreased repaired tendon gliding resistance, regardless of the number of strands used. Although the TSOL knot also increased the repair strength, the difference was only significant when 2-strand repairs were used. The results of our study support the use of the TSOL knot in the clinical setting of flexor tendon repair using 2 or 4-strand, knot-inside methods.

Clinical relevance: In surgical repair of flexor tendons, there is substantial interest in maximizing strength while minimizing friction. This study shows the potential utility of the TSOL knot to increase repair strength while decreasing gliding resistance, particularly in 2-strand repairs.

MeSH terms

  • Biomechanical Phenomena
  • Cadaver
  • Humans
  • Suture Techniques*
  • Sutures*
  • Tendons / surgery
  • Tensile Strength