Histology study and transcriptome analysis of the testis of Loach(Misgurnus anguillicaudatus) in response to phenanthrene exposure

Ecotoxicol Environ Saf. 2022 Sep 1:242:113950. doi: 10.1016/j.ecoenv.2022.113950. Epub 2022 Aug 4.

Abstract

Phenanthrene (PHE) is one of the most abundant polycyclic aromatic hydrocarbon compounds (PAHs) in the aquatic environment. The loaches were exposed at concentrations of 0.30、1.00、3.00 mg L-1 for 60 days. The effects of PHE on the testis development were evaluated by calculating the survival rate, observing the structure of testis and analyzing transcriptome. Firstly, PHE markedly decreased the survival rate in a dose-dependent manner. Then, the number and density of spermatogonia, primary spermatocytes, secondary spermatocytes and spermatids were substantially reduced under PHE exposure. The space in the seminiferous tubule obviously increased in the high PHE concentration group. Meanwhile, transcriptome comparative analysis identified 5329 differentially expressed genes (DEGs) including 2928 up-regulated and 2401 down-regulated in the testis of loach exposed PHE for 60 days. Meiotic cell cycle, arganelle fission, ATPase activity and adenylate nucleotide binding were significantly differences by GO (Gene Ontology) enrichment. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis revealed that TNF (Tumor Necrosis Factor) signaling pathway, CAMs (Cell Adhesion Molecules), cytochrome P450 and lipid metabolism were markedly regulated. In addition, eight DEGs were randomly selected from the testis transcriptomics results for qPCR verification, the results were consistent with RNA-Seq. Finally, related genes (piwil2, dmc1, vasa, ubr2, dnd, rnf17, plcb2, c-fos, gpx4) of testis development were further confirmed and they were differentially regulated after PHE exposure. In summary, a survey of the mechanism of loach testis response to PHE was performed, and a large number of gene expression levels regarding metabolism, spermatogenesis and immunity genes were acquired from RNA-seq. This study provide informations for elucidating the molecular mechanism of PHE affected the testis development of loach.

Keywords: DEGs; Microstructure; Reproductive toxicity; Testicular development.

MeSH terms

  • Animals
  • Cypriniformes*
  • Gene Expression Profiling
  • Male
  • Phenanthrenes* / metabolism
  • Testis
  • Transcriptome

Substances

  • Phenanthrenes