Nanoscale mapping of surface strain in tapered nanorods using confocal photoluminescence spectroscopy

Nanotechnology. 2022 Sep 9;33(48). doi: 10.1088/1361-6528/ac8bd9.

Abstract

The strain occurs spontaneously at the heterogeneous interfaces of virtually all crystalline materials. Consequently, the analysis across multiple interfaces requires a complementary characterization scheme with a resolution that fits the deformation scale. By implementing two-photon confocal laser scanning nanoscopy with an axial resolution of 10 nm, we extract the surface strain from the photoluminescence (PL) spectra, epitomized by a 2-fold enhancement at the tapered tips in comparison to the substrate of ZnO nanorods. We firstly traced the well-established contribution from quantum confinement (QC) to PL shift in three geometrically classified regions: (I) a strongly tapered region where the diameter increases from 3 to 20 nm; (II) a weakly tapered region with a gradually increasing diameter from 20 to 58 nm; (III) round cylindrical region interfacing the sapphire substrate. The measured PL shift influenced by the deformation is significantly stronger than the attained QC effect. Particularly, surface strain at the strongly tapered region turned out to drastically increase the PL shift which matches well with the analysis based on the surface to volume ratio incorporating mechanical parameters such as the compliance tensor component, strain dislocation constant, and surface stress. The surface strain increased at a lower temperature, further disclosing its inherent dependence on the thermal expansion coefficients in clear contrast to the temperature-invariant characteristics of QC.

Keywords: ZnO nanorod; confocal photoluminescence spectroscopy; interfacial strain; quantum confinement; surface strain.