Insights into non-thermal plasma chemistry of acetone diluted in N2/O2 mixtures: a real-time MS experiment

Phys Chem Chem Phys. 2022 Aug 31;24(34):20553-20564. doi: 10.1039/d2cp02119f.

Abstract

Understanding non-thermal plasma reactivity is a complicated task as many reactions take place due to a large energy spectrum. In this work, we used a well-defined photo-triggered non-filamentous discharge to study acetone decomposition in N2/O2 gas mixtures. The plasma reactor is associated to a compact chemical ionization FTICR mass spectrometer (BTrap) in order to identify and quantify in real-time acetone and by-products in the plasma. Presence of oxygen (1 to 5%) decreased notably acetone degradation. A tremendous change is observed in the by-products distribution concomitantly to a global decrease of their total concentration. While main products observed in oxygen-free gas mix are nitrile compounds, in oxygenated media they are replaced by formaldehyde, methanol and ketene. Methanol is maximum for 1% of O2 whereas formaldehyde and ketene concentration reach their maximum value at the highest oxygen concentration tested (5%). A number of nitrate, nitrite and isocyanate organic compounds (C1 and C2) are observed as well with HNO2, HNO3 and HNCO.