Metabolomics analysis of buck semen cryopreserved with trehalose

Front Genet. 2022 Aug 4:13:938622. doi: 10.3389/fgene.2022.938622. eCollection 2022.

Abstract

Trehalose is commonly used as an impermeable cryoprotectant for cryopreservation of cells, but its cryoprotective mechanism has now not but been determined. This study investigated the cryopreservation impact of trehalose on buck semen cryopreservation and finished metabolic profiling of freeze-thawed media by way of the GC-MS-based metabolomics for the first time. Metabolic pattern recognition and metabolite identification by means of principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) and metabolic pathway topology analysis revealed the results of trehalose on buck sperm metabolism at some point of cryopreservation. The results confirmed that trehalose drastically progressed sperm motility parameters and structural integrity after thawing. PCA and PLS-DA analysis discovered that the metabolic patterns of the freezing-thawing media of buck semen cryopreserved with trehalose (T group) or without trehalose (G group, Control) were certainly separated. Using screening conditions of VIP >1.5 and p vaule <0.05, a total of 48 differential metabolites have been recognized, whithin l-isoleucine, L-leucine, L-threonine, and dihydroxyacetone were notably enriched in valine, leucine and isoleucine biosynthesis, glycerolipid metabolism, and aminoacyl-tRNA biosynthesis pathways. In brief, trehalose can efficiently improve membrane structural integrity and motion parameters in buck sperm after thawing, and it exerts a cryoprotective impact with the aid of changing sperm amino acid synthesis and the glycerol metabolism pathway.

Keywords: buck; cryopreservation; metabolomics; spermatozoa; trehalose.