Moisture-triggered fast crystallization enables efficient and stable perovskite solar cells

Nat Commun. 2022 Aug 19;13(1):4891. doi: 10.1038/s41467-022-32482-y.

Abstract

Understanding the function of moisture on perovskite is challenging since the random environmental moisture strongly disturbs the perovskite structure. Here, we develop various N2-protected characterization techniques to comprehensively study the effect of moisture on the efficient cesium, methylammonium, and formamidinium triple-cation perovskite (Cs0.05FA0.75MA0.20)Pb(I0.96Br0.04)3. In contrast to the secondary measurements, the established air-exposure-free techniques allow us directly monitor the influence of moisture during perovskite crystallization. We find a controllable moisture treatment for the intermediate perovskite can promote the mass transportation of organic salts, and help them enter the buried bottom of the films. This process accelerates the quasi-solid-solid reaction between organic salts and PbI2, enables a spatially homogeneous intermediate phase, and translates to high-quality perovskites with much-suppressed defects. Consequently, we obtain a champion device efficiency of approaching 24% with negligible hysteresis. The devices exhibit an average T80-lifetime of 852 h (maximum 1210 h) working at the maximum power point.