Identification of Cytosolic DNA Sensor cGAS-STING as Immune-Related Risk Factor in Renal Carcinoma following Pan-Cancer Analysis

J Immunol Res. 2022 Aug 9:2022:7978042. doi: 10.1155/2022/7978042. eCollection 2022.

Abstract

Background: The cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) plays critical functions in innate immune responses via the production of the second messenger cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), which stimulates the adaptor stimulator of interferon genes (STING). However, the clinical relevance and prognostic value of the cGAS-STING pathway in human cancers remains largely unexplored.

Methods: A gene signature related to the cGAS-STING score was identified. The pan-cancer landscape of cGAS-STING expression was calculated using the RNAseq data acquired from the TCGA cohort. Tumor-infiltrating immune cells (TIICs) were determined by the ssGSEA method. Kaplan-Meier curves, Cox regression analyses, and the area under the curve (AUC) were employed to decipher the predictive value of cGAS-STING risk score and TIICs across several human cancers.

Results: Most tumor tissues displayed a higher cGAS-STING score compared with their corresponding nontumor tissues, except for prostate adenocarcinoma (PRAD) and uterine corpus endometrial carcinoma (UCEC). Higher cGAS-STING score was closely associated with poor clinical outcome of kidney renal clear cell carcinoma (KIRC) and kidney renal papillary cell carcinoma (KIRP), whereas the cGAS-STING score predicted a better prognosis in pheochromocytoma and paraganglioma (PCPG). Enrichment analysis showed that cGAS-STING was profoundly implicated in diverse immune-related pathways in KIRC, KIRP, and PCPG. Significant positive correlations were noticed between cGAS-STING score and TIICs, including activated CD8+ T cells, activated CD4+ T cells, monocytes, and mast cells. Finally, the cGAS-STING score was revealed to be an independent prognostic factor for KIRC patients and possessed a strong predictive power for the prognostic evaluation of KIRC and KIRP patients.

Conclusions: We constructed a cGAS-STING gene signature to predict survival and tumor immunity across human cancers, which can serve as a novel prognostic indicator and therapeutic target, especially in KIRC and KIRP.

MeSH terms

  • Carcinoma, Renal Cell* / genetics
  • DNA
  • Humans
  • Kidney Neoplasms* / genetics
  • Membrane Proteins* / genetics
  • Membrane Proteins* / metabolism
  • Nucleotidyltransferases* / genetics
  • Nucleotidyltransferases* / metabolism
  • Risk Factors
  • Signal Transduction

Substances

  • Membrane Proteins
  • STING1 protein, human
  • DNA
  • Nucleotidyltransferases
  • cGAS protein, human