Intestinal mucosal barrier in functional constipation: Dose it change?

World J Clin Cases. 2022 Jul 6;10(19):6385-6398. doi: 10.12998/wjcc.v10.i19.6385.

Abstract

Background: The intestinal mucosal barrier is the first line of defense against numerous harmful substances, and it contributes to the maintenance of intestinal homeostasis. Recent studies reported that structural and functional changes in the intestinal mucosal barrier were involved in the pathogenesis of several intestinal diseases. However, no study thoroughly evaluated this barrier in patients with functional constipation (FC).

Aim: To investigate the intestinal mucosal barrier in FC, including the mucus barrier, intercellular junctions, mucosal immunity and gut permeability.

Methods: Forty FC patients who fulfilled the Rome IV criteria and 24 healthy controls were recruited in the Department of Gastroenterology of China-Japan Friendship Hospital. The colonic mucus barrier, intercellular junctions in the colonic epithelium, mucosal immune state and gut permeability in FC patients were comprehensively examined. Goblet cells were stained with Alcian Blue/Periodic acid Schiff (AB/PAS) and counted. The ultrastructure of intercellular junctional complexes was observed under an electron microscope. Occludin and zonula occludens-1 (ZO-1) in the colonic mucosa were located and quantified using immunohistochemistry and quantitative real-time polymerase chain reaction. Colonic CD3+ intraepithelial lymphocytes (IELs) and CD3+ lymphocytes in the lamina propria were identified and counted using immunofluorescence. The serum levels of D-lactic acid and zonulin were detected using enzyme-linked immunosorbent assay.

Results: Compared to healthy controls, the staining of mucus secreted by goblet cells was darker in FC patients, and the number of goblet cells per upper crypt in the colonic mucosa was significantly increased in FC patients (control, 18.67 ± 2.99; FC, 22.42 ± 4.09; P = 0.001). The intercellular junctional complexes in the colonic epithelium were integral in FC patients. The distribution of mucosal occludin and ZO-1 was not altered in FC patients. No significant differences were found in occludin (control, 5.76E-2 ± 1.62E-2; FC, 5.17E-2 ± 1.80E-2; P = 0.240) and ZO-1 (control, 2.29E-2 ± 0.93E-2; FC, 2.68E-2 ± 1.60E-2; P = 0.333) protein expression between the two groups. The mRNA levels in occludin and ZO-1 were not modified in FC patients compared to healthy controls (P = 0.145, P = 0.451, respectively). No significant differences were observed in the number of CD3+ IELs per 100 epithelial cells (control, 5.62 ± 2.06; FC, 4.50 ± 2.16; P = 0.070) and CD3+ lamina propria lymphocytes (control, 19.69 ± 6.04/mm2; FC, 22.70 ± 11.38/mm2; P = 0.273). There were no significant differences in serum D-lactic acid [control, 5.21 (4.46, 5.49) mmol/L; FC, 4.63 (4.31, 5.42) mmol/L; P = 0.112] or zonulin [control, 1.36 (0.53, 2.15) ng/mL; FC, 0.94 (0.47, 1.56) ng/mL; P = 0.185] levels between FC patients and healthy controls.

Conclusion: The intestinal mucosal barrier in FC patients exhibits a compensatory increase in goblet cells and integral intercellular junctions without activation of mucosal immunity or increased gut permeability.

Keywords: Functional constipation; Goblet cells; Gut permeability; Intercellular junctions; Intestinal mucosal barrier; Mucosal immunity.