Understanding interactive processes: a review of CO2 flux, evapotranspiration, and energy partitioning under stressful conditions in dry forest and agricultural environments

Environ Monit Assess. 2022 Aug 16;194(10):677. doi: 10.1007/s10661-022-10339-7.

Abstract

Arid and semiarid environments are characterized by low water availability (e.g., in soil and atmosphere), high air temperature, and irregularity in the spatio-temporal distribution of rainfall. In addition to the economic and environmental consequences, drought also causes physiological damage to crops and compromises their survival in ecosystems. The removal of vegetation is responsible for altering the energy exchange of heat and water in natural ecosystems and agricultural areas. The fluxes of CO2 are also changed, and environments with characteristics of sinks, which can be sources of CO2 after anthropic disturbances. These changes can be measured through methods such as sap flow, eddy covariance, remote sensing, and energy balance. Despite the relevance of each method mentioned above, there are limitations in their applications that must be respected. Thus, this review aims to quantify the processes and changes of energy fluxes, CO2, and their interactions with the surfaces of terrestrial ecosystems in dry environments. Studies report that the use of methods that integrate data from climate monitoring towers and remote sensing products helps to improve the accuracy of the determination of energy fluxes on a global scale, also helping to reduce the dissimilarity of results obtained individually. Through the collection of works in the literature, it is reported that several areas of the Brazilian Caatinga biome, which is a Seasonally Dry Tropical Forest have been suffering from changes in land use and land cover. Similar fluxes of sensible heat in areas with cacti and Caatinga can be observed in studies. On the other hand, one of the variables influenced mainly by air temperature is net radiation. In dry forest areas, woody species can store large amounts of carbon in their biomass above and belowground. The use of cacti can modify the local carbon budget when using tree crops together. Therefore, the study highlights the complexity and severity of land degradation and changes in CO2, water, and energy fluxes in dry environments with areas of forest, grassland, and cacti. Vegetation energy balance is also a critical factor, as these simulations are helpful for use in forecasting weather or climate change. We also highlight the need for more studies that address environmental conservation techniques and cactus in the conservation of degraded areas.

Keywords: Dry forest; Eddy covariance; Energy balance method; Gross primary productivity; Semiarid.

Publication types

  • Review

MeSH terms

  • Carbon
  • Carbon Dioxide* / analysis
  • Ecosystem*
  • Environmental Monitoring
  • Forests
  • Water / metabolism

Substances

  • Water
  • Carbon Dioxide
  • Carbon