Layered double hydroxide intercalated with dimethylglyoxime for highly selective and ultrafast uptake of uranium from seawater

Dalton Trans. 2022 Aug 30;51(34):13046-13054. doi: 10.1039/d2dt02381d.

Abstract

In this study, we demonstrate the first example of a MgAl layered double hydroxide intercalated by a ketoxime compound (dimethylglyoxime, DMG), that is, MgAl-DMG-LDH (abbr. DMG-LDH), which exhibits excellent capture of uranium (U(VI)) both at high (ppm) and low (ppb) concentrations. The as-formed DMG-LDH shows an enormous maximum U(VI) sorption capacity (qUm) of 380 mg g-1 and an exceptionally rapid sorption rate (k2 = 2.97 g mg-1 min-1), reaching a high uptake of 99.14% within 5 min. For natural and contaminated seawater with high concentrations of Na+, Ca2+, Mg2+ and K+ concomitant cations, the DMG-LDH still can trap ∼85% U, displaying highly effective sorption toward U. The interaction mechanism between UO22+ and DMG2- provides an important reference for the development of highly effective capture of U(VI) by ketoxime materials. The DMG-LDH is currently the best ketoxime material for uranium extraction from nuclear waste and seawater.