Integrated modeling of "soft" and "hard" variables in manufacturing

Int J Adv Manuf Technol. 2022;122(11-12):4259-4265. doi: 10.1007/s00170-022-09872-z. Epub 2022 Aug 9.

Abstract

This paper presents a novel holistic modeling approach for investigating and analyzing the relationship of qualitative variables such as training and absenteeism with quantifiable shopfloor key performance indicators such as quality, inventory, and production rate. Soft variables, supervisor support and work environment, and their relationships with the hard variables, facility layout, and production strategies were investigated in this research. It was found in the literature that increasing absenteeism reduces the rate of production and causes a decrease in motivation, while training can increase the level of motivation if effective. A causal loop diagram was developed based on the evidence in the literature, and a system dynamics simulation model was created to depict these relations. It was confirmed that absenteeism affected the cycle time and motivation inversely, but it was not possible to always maintain a desired level of motivation. A discrete event simulation model was also built for the current and the future state maps of the production system. The model used output from the system dynamics model as its input to investigate the effects of the qualitative variables on the production system performance. This paper discusses in detail the stages of building the simulation models and the results recorded.

Keywords: Culture; Digital modeling; Discrete event simulation; Lean manufacturing; System dynamics.