A mathematical model of COVID-19 and the multi fears of the community during the epidemiological stage

J Comput Appl Math. 2023 Feb:419:114624. doi: 10.1016/j.cam.2022.114624. Epub 2022 Aug 9.

Abstract

Within two years, the world has experienced a pandemic phenomenon that changed almost everything in the macro and micro-environment; the economy, the community's social life, education, and many other fields. Governments started to collaborate with health institutions and the WHO to control the pandemic spread, followed by many regulations such as wearing masks, maintaining social distance, and home office work. While the virus has a high transmission rate and shows many mutated forms, another discussion appeared in the community: the fear of getting infected and the side effects of the produced vaccines. The community started to face uncertain information spread through some networks keeping the discussions of side effects on-trend. However, this pollution spread confused the community more and activated multi fears related to the virus and the vaccines. This paper establishes a mathematical model of COVID-19, including the community's fear of getting infected and the possible side effects of the vaccines. These fears appeared from uncertain information spread through some social sources. Our primary target is to show the psychological effect on the community during the pandemic stage. The theoretical study contains the existence and uniqueness of the IVP and, after that, the local stability analysis of both equilibrium points, the disease-free and the positive equilibrium point. Finally, we show the global asymptotic stability holds under specific conditions using a suitable Lyapunov function. In the end, we conclude our theoretical findings with some simulations.

Keywords: COVID-19; FDEs; Fear effect; Global stability; Local stability; Vaccines.