Diabetes is accompanied by changes in the levels of proteins involved in endosomal GLUT4 trafficking in obese human skeletal muscle

Endocrinol Diabetes Metab. 2022 Sep;5(5):e361. doi: 10.1002/edm2.361. Epub 2022 Aug 14.

Abstract

Introduction: The regulated delivery of the glucose transporter GLUT4 from intracellular stores to the plasma membrane underpins insulin-stimulated glucose transport. Insulin-stimulated glucose transport is impaired in skeletal muscle of patients with type-2 diabetes, and this may arise because of impaired intracellular trafficking of GLUT4. However, molecular details of any such impairment have not been described. We hypothesized that GLUT4 and/or levels of proteins involved in intracellular GLUT4 trafficking may be impaired in skeletal muscle in type-2 diabetes and tested this in obese individuals without and without type-2 diabetes.

Methods: We recruited 12 participants with type-2 diabetes and 12 control participants. All were overweight or obese with BMI of 25-45 kg/m2 . Insulin sensitivity was measured using an insulin suppression test (IST), and vastus lateralis biopsies were taken in the fasted state. Cell extracts were immunoblotted to quantify levels of a range of proteins known to be involved in intracellular GLUT4 trafficking.

Results: Obese participants with type-2 diabetes exhibited elevated fasting blood glucose and increased steady state glucose infusion rates in the IST compared with controls. Consistent with this, skeletal muscle from those with type-2 diabetes expressed lower levels of GLUT4 (30%, p = .014). Levels of Syntaxin4, a key protein involved in GLUT4 vesicle fusion with the plasma membrane, were similar between groups. By contrast, we observed reductions in levels of Syntaxin16 (33.7%, p = 0.05), Sortilin (44%, p = .006) and Sorting Nexin-1 (21.5%, p = .039) and -27 (60%, p = .001), key proteins involved in the intracellular sorting of GLUT4, in participants with type-2 diabetes.

Conclusions: We report significant reductions of proteins involved in the endosomal trafficking of GLUT4 in skeletal muscle in obese people with type 2 diabetes compared with age- and weight-matched controls. These abnormalities of intracellular GLUT4 trafficking may contribute to reduced whole body insulin sensitivity.

Keywords: clinical medicine; diabetes; metabolic disease.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Diabetes Mellitus, Type 2* / complications
  • Diabetes Mellitus, Type 2* / metabolism
  • Glucose / metabolism
  • Humans
  • Insulin / metabolism
  • Insulin Resistance*
  • Muscle, Skeletal / metabolism
  • Obesity / complications
  • Obesity / metabolism

Substances

  • Insulin
  • Glucose