Biological activity reduction and mitochondrial and lysosomal dysfunction of mesenchymal stem cells aging in vitro

Stem Cell Res Ther. 2022 Aug 13;13(1):411. doi: 10.1186/s13287-022-03107-4.

Abstract

Background: Mesenchymal stem cells (MSCs) have been extensively used for the treatment of various diseases in preclinical and clinical trials. In vitro propagation is needed to attain enough cells for clinical use. However, cell aging and viability reduction caused by long-time culture have not been thoroughly investigated, especially for the function of mitochondria and lysosomes. Therefore, this study was designed to detect mitochondrial and lysosomal activity, morphological and functional changes in human umbilical cord MSCs (UMSCs) after long-time culture.

Methods: First, we examined cell activities, including proliferation and immigration ability, differentiation potential, and immunosuppressive capacity of UMSCs at an early and late passages as P4 (named UMSC-P4) and P9 (named UMSC-P9), respectively. Then, we compared the mitochondrial morphology of UMSC-P4 and UMSC-P9 using the electronic microscope and MitoTracker Red dyes. Furthermore, we investigated mitochondrial function, including mitochondrial membrane potential, antioxidative ability, apoptosis, and ferroptosis detected by respective probe. Cell energy metabolism was tested by mass spectrometry. In addition, we compared the lysosomal morphology of UMSC-P4 and UMSC-P9 by electronic microscope and lysoTracker Red dyes. Finally, the transcriptome sequence was performed to analyze the total gene expression of these cells.

Results: It was found that UMSC-P9 exhibited a reduced biological activity and showed an impaired mitochondrial morphology with disordered structure, reduced mitochondrial crista, and mitochondrial fragments. They also displayed decreased mitochondrial membrane potential, antioxidative ability, tricarboxylic acid cycle activity and energy production. At the same time, apoptosis and ferroptosis were increased. In addition, UMSC-P9, relative to UMSC-P4, showed undegraded materials in their lysosomes, the enhancement in lysosomal membrane permeability, the reduction in autophagy and phagocytosis. Moreover, transcriptome sequence analysis also revealed a reduction of cell function, metabolism, mitochondrial biogenesis, DNA replication and repair, and an increase of gene expression related to cell senescence, cancer, diseases, and infection in UMSC-P9.

Conclusion: This study indicates that in vitro long-time culturing of MSCs can cause mitochondrial and lysosomal dysfunction, probably contributing to the decline of cell activity and cell aging. Therefore, the morphology and function of mitochondria and lysosomes can be regarded as two important parameters to monitor cell viability, and they can also serve as two important indicators for optimizing in vitro culture conditions.

Keywords: Cell activity; Human umbilical cord mesenchymal stem cells; Lysosomal dysfunction; Mitochondrial dysfunction.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Coloring Agents / metabolism
  • Humans
  • Lysosomes / metabolism
  • Mesenchymal Stem Cells* / metabolism
  • Mitochondria / metabolism
  • Umbilical Cord

Substances

  • Coloring Agents