Association mapping for abiotic stress tolerance using heat- and drought-related syntenic markers in okra

Mol Biol Rep. 2022 Dec;49(12):11409-11419. doi: 10.1007/s11033-022-07827-x. Epub 2022 Aug 12.

Abstract

Background: Considerable production losses are caused by heat and drought stress in okra. Germplasm evaluation at genetic level is essential for the selection of promising genotypes. Lack of genomic information of okra limits the use of genetic markers. However, syntenic markers of some related family could be used for molecular characterization of major economic traits.

Methods and results: Herein, 56 okra genotypes were evaluated for drought and heat tolerance. Sixty-one expressed sequence tags (ESTs) identified for heat and drought tolerance in cotton were searched from literature surveys and databases. The identified ESTs were BLAST searched into okra unigene database. Primers of selected okra unigenes were synthesized and amplified in all genotypes using standard polymerase chain reaction (PCR) protocol. Marker trait association (MTA) of the syntenic unigenes were identified between genotypic and phenotypic data on the basis of linkage disequilibrium Functional syntenic analysis revealed that out of these 61 cotton ESTs 55 had functional homology with okra unigenes. These 55 unigenes were used as markers for further analysis (amplification). Okra genotypes showed significance variations for all the physo-morphological parameters under heat and drought stress. Genotypes Perbhani Karanti, IQRA-III, Selection Super Green, Anmol and Line Bourd performed better under drought stress whereas genotypes Perbhani Karanti, IQRA-III, Green Gold, OK-1501 and Selection Super Green showed heat tolerance. Fifty markers showed amplification in okra. Fifty-six okra genotypes were clustered into three distinct populations. LD analysis has shown most significant linkage between markers Unigene43786 and Unigene3662. MTAs using MLM and GLM models revealed that 23 markers have significant associations (p < 0.05) with different traits under control and stressed conditions. Relative water content is associated with four markers (Unigene10673, Unigene99547, Unigene152901, and Unigene129684) under drought conditions. Whereas, Electrolyte leakage was associated with 3 markers (Unigene109922, Unigene28667 and Unigene146907) under heat stress.

Conclusion: These identified unigenes may be helpful in the development of drought and heat tolerant genotypes in okra.

Keywords: Drought; Expressed sequence tags; Heat; Marker trait association; Okra; Synteny; Unigene.

MeSH terms

  • Abelmoschus* / genetics
  • Droughts*
  • Expressed Sequence Tags
  • Genetic Markers / genetics
  • Stress, Physiological / genetics

Substances

  • Genetic Markers