Synthesis Characterization and Highly Protective Efficiency of Tetraglycidyloxy Pentanal Epoxy Prepolymer as a Potential Corrosion Inhibitor for Mild Steel in 1 M HCl Medium

Polymers (Basel). 2022 Jul 30;14(15):3100. doi: 10.3390/polym14153100.

Abstract

Anticorrosive protection efficiency of novel tetrafunctional epoxy prepolymer, namely 2,3,4,5-tetraglycidyloxy pentanal (TGP), for mild steel in 1 M HCl medium was assessed through potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), contact angle (CA), adsorption isotherm model, temperature effect and thermodynamic parameters. The synthesized TGP was characterized and confirmed by Fourier transform infrared (FTIR) spectroscopy and nuclear magnetic resonance (NMR). The inhibitory efficiencies found at lower concentration of the prepolymer TGP were85% (PDP) and 87.17% (EIS). PDP measurement illustrated that the TGP behaved as a mixed-type inhibitor in the realized solution. SEM and EDS analysis showeda significant decrease in the corrosion of the MS surface in the presence of the inhibitory prepolymer compared with the blank (1 M HCl). Langmuir adsorption isotherm is the most acceptable modelto describe the TGP epoxy prepolymer on the MS area.

Keywords: FTIR/NMR characterization; Langmuir adsorption; PDP/EIS measurements; SEM/EDS/CA analyses; anticorrosive protection; epoxy prepolymer TGP; synthesis.

Grants and funding

This research received no external funding.