STROBE-GnRHa pretreatment in frozen-embryo transfer cycles improves clinical outcomes for patients with persistent thin endometrium: A case-control study

Medicine (Baltimore). 2022 Aug 5;101(31):e29928. doi: 10.1097/MD.0000000000029928.

Abstract

The well-prepared endometrium with appropriate thickness plays a critical role in successful embryo implantation. The thin endometrium is the main factor of frozen-embryo transfer (FET), resulting in the failure of implantation undergoing FET. Hormone treatment is suggested to improve endometrium thickness; however, among the larger numbers of cases, it cannot reach the sufficient thickness, which leads to a high cancelation rate of embryo transfer as well as waste high-quality embryos. Thus, it increases the burden to patients in both economic and psychological perspectives. We performed a retrospective observational study, which was composed with 2 cohorts, either with the conventional hormone replacement therapy (HRT) protocol or HRT with gonadotrophin-releasing hormone agonist (GnRHa) pretreatment to prepare the endometrium before FET. The measurements of endometrium thickness, hormone level, transfer cycle cancelation rate, pregnancy rate, and implantation rate were retrieved from the medical records during the routine clinic visits until 1 month after embryo transfer. The comparisons between 2 cohorts were performed by t-test or Mann-Whitney U test depending on the different attributions of data. In total, 49 cycles were under HRT with GnRHa pretreatment and 84 cycles were under the conventional HRT protocol. HRT with GnRHa pretreatment group improved the endometrial thickness (8.13 ± 1.79 vs 7.51 ± 1.45, P = .031), decreased the transfer cancelation rate (P = .003), and increased clinical pregnancy rate and implantation rate significantly (both P = .001). Additionally, luteinizing hormone level in pretreatment group was consistently lower than conventional HRT group (P < .05). Our study revealed HRT with GnRHa pretreatment efficiently improved the endometrial thickness, therefore, decreased the FET cycle cancelation. It also elevated the embryo implantation rate and clinical pregnancy rate by improving endometrial receptivity.

Publication types

  • Observational Study

MeSH terms

  • Case-Control Studies
  • Cryopreservation*
  • Embryo Implantation
  • Embryo Transfer* / methods
  • Endometrium
  • Female
  • Hormones
  • Humans
  • Pregnancy
  • Pregnancy Rate
  • Retrospective Studies

Substances

  • Hormones