Topological Gradients for Metal Film-Based Strain Sensors

Nano Lett. 2022 Aug 24;22(16):6637-6646. doi: 10.1021/acs.nanolett.2c01967. Epub 2022 Aug 5.

Abstract

Metal film-based stretchable strain sensors hold great promise for applications in various domains, which require superior sensitivity-stretchability-cyclic stability synergy. However, the sensitivity-stretchability trade-off has been a long-standing dilemma and the metal film-based strain sensors usually suffer from weak cyclic durability, both of which significantly limit their practical applications. Here, we propose an extremely facile, low-cost and spontaneous strategy that incorporates topological gradients in metal film-based strain sensors, composed of intrinsic (grain size and interface) and extrinsic (film thickness and wrinkle) microstructures. The topological gradient strain sensor exhibits an ultrawide stretchability of 100% while simultaneously maintaining a high sensitivity at an optimal topological gradient of 4.5, due to the topological gradients-induced multistage film cracking. Additionally, it possesses a decent cyclic stability for >10 000 cycles between 0 and 40% strain enabled by the gradient-mixed metal/elastomer interfaces. It can monitor the full-range human activities from subtle pulse signals to vigorous joint movements.

Keywords: Cracking; Gradient; Metal films; Stretchable strain sensors; Topology.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Elastomers / chemistry
  • Humans
  • Metals
  • Monitoring, Physiologic
  • Wearable Electronic Devices*

Substances

  • Elastomers
  • Metals