Metabolomics reveals the mechanism of polyethylene microplastic toxicity to Daphnia magna

Chemosphere. 2022 Nov;307(Pt 2):135887. doi: 10.1016/j.chemosphere.2022.135887. Epub 2022 Aug 3.

Abstract

Microplastic exposure leads to various toxic effects in Daphnia magna; however, the effects of microplastics on the metabolic processes in D. magna and the corresponding molecular toxicity mechanisms remain unclear. In the present study, the effects of acute exposure to polyethylene microplastics with different particle sizes (20 μm [MPs-20] and 30 μm [MPs-30]) on metabolites in D. magna and the mechanisms of toxicity were investigated by combining metabolomics and traditional toxicology techniques. Exposure to both MPs-20 and MPs-30 resulted in significant accumulation of microplastics in the gut of D. magna and significantly reduced D. magna survival and heart rate. Metabolomics analysis revealed that MPs-20 and MPs-30 induced significant changes in up to 88 and 91 differential metabolites, respectively, and collectively induced significant changes in 75 metabolites in D. magna. Among lipid metabolites, MPs-20 specifically downregulated phosphatidylcholine and upregulated phosphatidylethanolamine, which mainly affected phospholipid metabolism, whereas MPs-30 specifically downregulated amino acid metabolites l-glutamine, l-glutamate and malic acid, which mainly interfered with energy metabolism. The results of this study provide novel insights into the mechanism of effects of microplastics on metabolic processes in D. magna.

Keywords: Daphnia magna; Energy metabolism; Metabolites; Microplastics; Toxicity.

MeSH terms

  • Animals
  • Daphnia
  • Glutamic Acid
  • Glutamine / pharmacology
  • Microplastics*
  • Phosphatidylcholines / pharmacology
  • Phosphatidylethanolamines / pharmacology
  • Plastics / toxicity
  • Polyethylene / toxicity
  • Water Pollutants, Chemical* / analysis

Substances

  • Microplastics
  • Phosphatidylcholines
  • Phosphatidylethanolamines
  • Plastics
  • Water Pollutants, Chemical
  • Glutamine
  • Glutamic Acid
  • Polyethylene