Ultralow Melting Temperature of High-Pressure Face-Centered Cubic Superionic Ice

J Phys Chem Lett. 2022 Aug 18;13(32):7448-7453. doi: 10.1021/acs.jpclett.2c01814. Epub 2022 Aug 5.

Abstract

Superionic ice with oxygen in a face-centered cubic (fcc) sublattice is ascribed to the origin of magnetic fields of Uranus and Neptune, since the melting temperature (Tm) of fcc-superionic ice is believed to be higher than the isentropes of ice giants. However, precisely measuring the fcc-superionic phase experimentally remains a difficult task. The majority of the systematic investigations of its Tm were performed using perfect oxygen fcc-sublattice computations, which could result in superheating and overestimation of Tm. On the basis of the ab initio molecular dynamics method and the model with H2O vacancy, we avoid superheating and obtain a much lower Tm than previous reports, indicating that fcc-superionic ice cannot exist in the interiors of Uranus and Neptune. Further simulations with the two-phase method justify the conclusion. The results suggest that superheating should be seriously treated when simulating the phase diagram of other hydrogen-related superionic states, which are widely used to understand the properties of ice giants, Earth, and Venus.