Evaluation of High Yielding Maize Hybrids Based on Combined Stability Analysis, Sustainability Index, and GGE Biplot

Biomed Res Int. 2022 Jul 25:2022:3963850. doi: 10.1155/2022/3963850. eCollection 2022.

Abstract

Selection of high yielding and stable maize hybrid requires effective method of evaluation. Multienvironment evaluation is a critical step in plant breeding programs that is aimed at selecting the ideal genotype in a wide range of environments. A method of evaluation that combines a variety parameter of stability could provide more accurate information to select the ideal genotype. The aims of the study were (i) to identify the effect of genotype, environment, and genotype × environment interactions (GEIs) on maize hybrid yields and (ii) to select and to compare maize hybrids that have high and stable yields in diverse environments in Sumatra Island based on combined analysis, selection index, and GGE biplot. The study was conducted in five different environments in Sumatra Island, Indonesia, using a randomized complete block design repeated three times. Data were estimated using combined variance analysis, parametric and nonparametric stability, sustainability index, and GGE biplot. The results showed that the genotype had a significant effect on maize hybrid yields with a contribution of 41.797%. The environment contributed to 24.314%, and GEIs contributed 33.889% of the total variation. E1 (Karo, South Sumatra; dry season) and E3 (Tanjung Bintang, Lampung; dry season) were identified as the most ideal environments (representative) for testing the hybrids for wider adaptability. The maize hybrid with high and stable yields can be selected based on combined stability analysis and sustainability index as well as GGE biplot. These three methods are effectively selected high yielding and stable genotypes when they are used together. The three maize hybrids, namely, MH2, MH8, and MH9, are recommended as high yielding and stable genotype candidates.

MeSH terms

  • Genotype
  • Indonesia
  • Plant Breeding*
  • Zea mays* / genetics