Optically Triggered Nanoscale Plasmonic Dynamite

ACS Nano. 2022 Sep 27;16(9):13667-13673. doi: 10.1021/acsnano.2c02402. Epub 2022 Aug 3.

Abstract

Photons as energy carriers are clean and abundant, which can be conveniently applied for nanoactuation but the response is usually slow with very low energy efficiency/density. Here, we underpin the concept of robust nanoscale plasmonic dynamite by incorporating fullerene (C60). The Au@C60 core-shell nanoparticles can be triggered to explode in nanoscale with synergy of plasmon-enhanced photochemical and photothermal effects. It is suggested that a sensible amount of CO2 was generated and pressurized in nanometric volume in an extremely short time scale (∼ns), which triggers the nanoexplosion, rendering the ejection of Au NPs at the speed over 300 m/s. The ejection generates extremely large local forces (∼1 μN) with thermomechanical energy efficiency up to ∼30%, which is demonstrated as a powerful nanoengine for controlled mobilization of micro-objects on solid surfaces. Such nanoscale plasmonic dynamite is highly exploitable for different types of nanomachines, which provides a powerful energy source for nanoactuation and nanomigration.

Keywords: nanoactuators; nanoexplosion; photochemical; photothermal; plasmons.