Computational insights into the formation and nature of the sulfilimine bond in collagen-IV

RSC Adv. 2022 Jul 22;12(33):21092-21102. doi: 10.1039/d2ra02105f. eCollection 2022 Jul 21.

Abstract

Collagen IV is essential component of basement membrane in the tissues. It provides proper cellular structure by the formation of sulfilimine bond (S[double bond, length as m-dash]N) between methionine and lysine or hydroxylysine (cross-links) residues which can be formed with or without post-translational modification. The sulfilimine bond has critical roles in tissue development and human diseases. Peroxidasin, a basement membrane peroxidase, generates reactive halogen species including hypobromous (HOBr) acid and hypochlorous (HOCl) acid which help to form halosulfonium or haloamine. The sulfilamine bond can be formed either by the formation of halosulfonium or by the formation of halomine. The aim of the study is the investigation of the formation of sulfilimine bond and its nature in collagen IV using multi-scale approach that included MD, QM-cluster, systematic series of small models, and NBO analysis. These results suggest that sulfilimine bond can be formed either via brominated/chlorinated halosulfonium or haloamine pathway. The results of systematic series of small model indicate that the formation of sulfilimine complex from halosulfonium happens through the formation of positively charged halosulfonated sulfilimine complex. It also suggests that the formation of sulfilimine complex from haloamine occurs through the formation of positively charged sulfilimine complex where the S and N bond forms and halogen goes off at the same time. Furthermore, the NBO analysis suggest the S and N bond is strongly polarized toward nitrogen in both single protonated and neutral system, N δ- ← S δ+ and also indicate the existence of a coordinate covalent (i.e. dative) bond.