Virtual reality training improves accommodative facility and accommodative range

Int J Ophthalmol. 2022 Jul 18;15(7):1116-1121. doi: 10.18240/ijo.2022.07.11. eCollection 2022.

Abstract

Aim: To evaluate the effects of virtual reality (VR) training on different parameters of vision.

Methods: Sixty individuals ranged 18-60 years old with asthenopia were randomly divided into short-term (n=40) and long-term (n=20) treatment groups. They were given a specially designed VR training device only once for 15min or 3-4 times a day for 15min each time for 1mo. The visual acuity, spherical equivalent, accommodative range, accommodative facility, pupil size, and visual fatigue were evaluated before (control) and after VR training.

Results: The visual acuity, accommodative range, and accommodative facility increased in subjects of the short-term treatment group, whereas their pupil size contracted significantly. No significant changes in spherical equivalent and visual fatigue were observed. The changes in distant vision and corrected visual acuity were positively correlated with those in pupil size, but not with spherical equivalent. The accommodative range and accommodative facility improved significantly in subjects of the long-term treatment group. No significant changes in visual acuity, spherical equivalent, pupil size, and visual fatigue were noted.

Conclusion: VR training can improve the accommodative range and accommodative facility of human eyes. Although short-term VR training can transiently improve vision, which probably due to bright light adaptation, there is no evidence that it can improve myopia.

Keywords: accommodation; myopia; virtual reality; visual fatigue; visual function.