Structural insights into the binding of SARS-CoV-2, SARS-CoV, and hCoV-NL63 spike receptor-binding domain to horse ACE2

Structure. 2022 Oct 6;30(10):1432-1442.e4. doi: 10.1016/j.str.2022.07.005. Epub 2022 Aug 1.

Abstract

Severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-2, and human coronavirus (hCoV)-NL63 utilize ACE2 as the functional receptor for cell entry, which leads to zoonotic infection. Horses (Equus caballus) attracted our attention because the spike protein receptor-binding domains (RBDs) of SARS-CoV-2 and SARS-CoV-2-related coronaviruses bind equine ACE2 (eACE2) with high affinity. Here we show that eACE2 binds the RBDs of these three coronaviruses and also SARS-CoV-2 variants but with lower affinities compared with human ACE2 (hACE2). Structural analysis and mutation assays indicated that eACE2-H41 accounts for the lower binding affinity of eACE2 to the RBDs of SARS-CoV-2 variants (Alpha, Beta, and Gamma), SARS-CoV, and hCoV-NL63. Pseudovirus infection assays showed that the SARS-CoV-2 Delta strain (B.1.617.2) displayed a significantly increased infection efficiency in eACE2-expressing HeLa cells. Our results reveal the molecular basis of eACE2 binding to the RBDs of SARS-CoV, SARS-CoV-2, and hCoV-NL63, which provides insights into the potential animal transmission of these ACE2-dependent coronaviruses.

Keywords: ACE2; SARS-CoV; SARS-CoV-2; complex structure; hCoV-NL63; horse; pseudovirus infection; receptor binding domain.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Angiotensin-Converting Enzyme 2
  • Animals
  • COVID-19*
  • Coronavirus NL63, Human*
  • HeLa Cells
  • Horses
  • Humans
  • Peptidyl-Dipeptidase A / genetics
  • Peptidyl-Dipeptidase A / metabolism
  • SARS-CoV-2
  • Spike Glycoprotein, Coronavirus / genetics

Substances

  • Spike Glycoprotein, Coronavirus
  • spike protein, SARS-CoV-2
  • Peptidyl-Dipeptidase A
  • Angiotensin-Converting Enzyme 2

Supplementary concepts

  • SARS-CoV-2 variants