The vibrational and hyperfine spectroscopy toward laser cooling 87Sr35Cl

Spectrochim Acta A Mol Biomol Spectrosc. 2022 Dec 5:282:121679. doi: 10.1016/j.saa.2022.121679. Epub 2022 Jul 27.

Abstract

We theoretically investigate the possibility of laser cooling 87Sr35Cl molecule in accordance with vibrational and hyperfine spectroscopy. The potential energy curves and dipole moment of the X2Σ+1/2, A2Π1/2,3/2 and B2Σ+ states are calculated using ab initio method and the spectroscopic parameters are in good agreement with the experimental data. On account of the accurate potential energy curves and the transition dipole moment, the Franck - Condon factors and radiative lifetimes are predicted. Comparing the conditions of laser cooling candidate molecules, the A2Π 1/2 ↔ X2Σ+1/2 transition is selected as the laser cooling cycle system. In order to obtain an approximately closed cooling cycle system, we employed matrix element algorithm to calculated the hyperfine spectroscopy and branching ratios of the 87Sr35Cl molecule. Furthermore, an electro-optical modulator (EOM) is designed including six hyperfine levels of the ground state X2Σ+1/2 (v = 0, N = 1).