Controlling electricity storage to balance electricity costs and greenhouse gas emissions in buildings

Energy Inform. 2022;5(1):11. doi: 10.1186/s42162-022-00216-5. Epub 2022 Jul 27.

Abstract

The optimal management of flexible loads and generation sources such as battery storage systems in buildings is often concerned with minimizing electricity costs. There is an increasing need to managed flexible resources in a way that minimises both costs and carbon emissions. Minimising emissions of grid consumed electricity requires quantification of the carbon emissions intensity of the electricity grid, so first we develop a real-time emission intensity model of the Australian National Energy Market using a power-flow tracing approach. This model reveals that electricity price signals currently do not drive consumers toward using electricity at times of lower emissions. For example, the mean and peak emissions intensity during low electricity tariff periods are the same or slightly higher than those during high tariff periods, while the 30-min wholesale electricity price in each region has no significant correlation with the emissions intensity of electricity consumed in that region. The emissions model is then used to investigate the extent to which controlling a battery storage system to minimise costs under existing electricity tariff structures also leads to minimisation of greenhouse gas emissions for a case study commercial office building. Results show that reducing emissions does indeed come at the expense of increasing costs. For example, annual operating cost savings reduced from 31% to 20% when the battery control was changed from minimising costs to minimising emissions. This has important implications for buildings seeking to reduce emissions as well as for the design of electricity tariffs.

Keywords: Carbon cost; Carbon intensity; Electricity tariffs; MPC; National Electricity Market; Net zero emissions.