Simultaneous measurement of displacement and temperature using a balloon-like hybrid fiber sensor

Opt Lett. 2022 Aug 1;47(15):3708-3711. doi: 10.1364/OL.465403.

Abstract

A fiber sensor based on a silica capillary in a balloon-like shape for simultaneous measurement of displacement and temperature is proposed and experimentally demonstrated. The sensor is fabricated by splicing a segment of a hollow-core fiber between two single-mode fibers (SMF) and by creating a balloon shape with the capillary at the top-center position. The SMF-capillary-SMF configuration excites an antiresonant (AR) guidance, and the balloon shape enhances the Mach-Zehnder interferometer (MZI). Experimental results show that, for a balloon length of 4.0 cm and a capillary length of 1.2 cm, the AR is insensitive to displacement and its sensitivity to temperature is 14.3 pm/°C, while the MZI has a sensitivity to displacement of 1.68 nm/mm in the range between 0 and 5 mm and a sensitivity to temperature of 28.6 pm/°C, twice the value of the AR. The proposed fiber sensor has only one sensing element in one configuration, which makes it simple to fabricate as well as low cost.

MeSH terms

  • Equipment Design
  • Fiber Optic Technology*
  • Interferometry* / methods
  • Optical Fibers
  • Refractometry / methods
  • Temperature