Carbon stock stability in drained peatland after simulated plant carbon addition: Strong dependence on deeper soil

Sci Total Environ. 2022 Nov 20:848:157539. doi: 10.1016/j.scitotenv.2022.157539. Epub 2022 Jul 29.

Abstract

Peatlands are vital soil carbon sinks, yet this function is jeopardized by plant carbon which could change the decomposition rate of soil organic carbon, knowing as "priming effect". How the priming effect depends on depth is a critical question in drained peatland given the heterogeneity of soil layers defined by the water table, which include the surface acrotelm, inter-mesotelm and deep catotelm. Here, through incubation, we quantified the response of these three soil layers to addition of 13C-labeled oxalate, glucose, cellulose, or cinnamic acid under anoxic or oxic conditions on the Zoige Plateau in Tibet. Soil carbon in the inter-mesotelm showed the greatest decomposition, with the highest humification index and lowest microbial biomass carbon, while the soil carbon at the surface acrotelm was least decomposed. Under anoxic conditions, exogenous carbon addition reduced CO2 emission by 12.2% at the surface acrotelm but increased by 59.8% in the inter-mesotelm and 23.5% in the deep catotelm. In the inter-mesotelm, oxalate addition significantly increased CO2 emission by 63.9%, while cinnamic acid significantly increased it by 92.9%. In the deep catotelm, cinnamic acid significantly increased CO2 emission by 55.3%. These results suggested that deeper soil organic carbon was more sensitive to plant carbon, particularly complex or recalcitrant carbon, than surface acrotelm soil. Under oxic conditions, carbon addition increased surface soil CO2 emission by 18.9%, and triggered even greater increase at inter-mesotelm and deep catotelm soil, with proportions of 48.3% and 32.0%, respectively. Under both conditions, peat profile CO2 release increased by 17.2-31.4% after exogenous carbon addition, and more than 77.8% of the increase came from the deeper two layers. These findings highlighted the need to take full account of priming effect of deeper soil in order to assess and predict the stability of carbon stocks in drained peatland.

Keywords: CO(2) emission; Plant carbons; Priming effect; Recalcitrant carbon; Water table.

MeSH terms

  • Carbon Dioxide / analysis
  • Carbon*
  • Cellulose
  • Cinnamates
  • Glucose
  • Oxalates
  • Plants
  • Soil*

Substances

  • Cinnamates
  • Oxalates
  • Soil
  • cinnamic acid
  • Carbon Dioxide
  • Carbon
  • Cellulose
  • Glucose