Spatial-temporal evolution of ESV and its response to land use change in the Yellow River Basin, China

Sci Rep. 2022 Jul 30;12(1):13103. doi: 10.1038/s41598-022-17464-w.

Abstract

The value of ecosystem services, as well as their temporal and spatial characteristics, can be used to help areas develop focused and localized sustainable ecological management plans. Thus, this study conducted in the Yellow River Basin (YRB) of China, analyzed the ecosystem service value (ESV) and its spatial-temporal variation characteristics. This study used the equivalent factor and geospatial exploration methods, introduced the elasticity coefficient, and explored the response of ESV change to land-use change, based on the land use cover data from 1990 to 2020. The results showed that from 1990 to 2020, YRB ecosystem service value showed an overall increasing trend, mainly because the ecological construction project increased forest and grasslands in this region. In the past 30 years, spatial characteristics of ESV in YRB was relatively stable. The high-value areas were mainly distributed in the upper Yellow River Basin, while the low-value areas were mainly distributed in the lower Yellow River Basin, as the cold and hot spots were reduced. The ESV barycenter coordinates showed the direction of the transfer trajectory, which is first to southwest, northeast, and then to southwest. From 2000 to 2010, YRB land-use change had greater impact on ESV. Since 2010, the disturbance of ecosystem services by land-use change has decreased. Consequently, the elastic index of the upstream and Loess Plateau regions were significantly higher than that of other regions, and the impact of land-use change on ecosystem services was more obvious, due to improved large-scale ecological construction projects implementation. Conclusively, this study recommends the use of comprehensive spatial-temporal assessment of ESV for sustainable development and ecological protection in the YRB.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • China
  • Conservation of Natural Resources
  • Ecosystem*
  • Forests
  • Rivers*