The ameliorating effects of metformin on disarrangement ongoing in gastrocnemius muscle of sarcopenic and obese sarcopenic mice

Biochim Biophys Acta Mol Basis Dis. 2022 Nov 1;1868(11):166508. doi: 10.1016/j.bbadis.2022.166508. Epub 2022 Jul 26.

Abstract

Sarcopenia and obese sarcopenia are increasingly prevalent chronic diseases with multifactorial pathogenesis, and no approved therapeutic drug to date. In the established sarcopenic mice models, muscle weakness, ectopic lipid deposition, and inflammatory responses in both serum and gastrocnemius muscle were observed, which were even deteriorated in obese sarcopenic models. With metformin intervention for 5 months, metformin exhibited benefits and restoring effects on gastrocnemius muscle of sarcopenic mice, but less effective on that of obese sarcopenic mice, as reflected in the increased percentage of muscle mass and enlarged fiber cross-sectional area, enhanced grip strength and exercise capacities, as well as the ameliorated ectopic lipid deposition and partially restored level of TNF-α, IL-1β, IL-6, MCP-1 and IL-1α, which may be via the activation of phospho-AMPKα (Thr172). The significant up-regulated mRNA and protein level of lipolysis related proteins like hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) may contribute to the ameliorated ectopic lipid deposition with metformin intervention. The uptake of free fatty acid may be also inhibited in obese sarcopenic mice with metformin administration, as reflected in down-regulated mRNA and protein level of fatty acid transporter CD36. Furthermore, NF-κB signaling pathway was involved in the anti-inflammatory effect of metformin. These findings suggest that metformin treatment may be conducive to the prevention of age-related sarcopenia by regulating lipid metabolism in skeletal muscle, i.e. enhanced lipolysis and attenuated hyper-inflammatory responses, which may be AMPK-dependent processes. Moreover, high-fat diet would aggravate the damage to ageing in skeletal muscles and reduced their reactivity to metformin.

Keywords: AMPK; Ectopic lipid deposition; Inflammation; Metformin; Obese sarcopenia; Sarcopenia.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • AMP-Activated Protein Kinases / metabolism
  • Animals
  • Anti-Inflammatory Agents
  • Fatty Acids, Nonesterified / metabolism
  • Interleukin-6 / metabolism
  • Lipase / metabolism
  • Metformin* / pharmacology
  • Metformin* / therapeutic use
  • Mice
  • Mice, Obese
  • Muscle, Skeletal / metabolism
  • NF-kappa B / metabolism
  • Obesity / complications
  • Obesity / drug therapy
  • Obesity / metabolism
  • RNA, Messenger / metabolism
  • Sarcopenia* / drug therapy
  • Sarcopenia* / etiology
  • Sterol Esterase
  • Tumor Necrosis Factor-alpha / metabolism

Substances

  • Anti-Inflammatory Agents
  • Fatty Acids, Nonesterified
  • Interleukin-6
  • NF-kappa B
  • RNA, Messenger
  • Tumor Necrosis Factor-alpha
  • Metformin
  • AMP-Activated Protein Kinases
  • Sterol Esterase
  • Lipase