Implications of leg length for metabolic health and fitness

Evol Med Public Health. 2022 Jul 21;10(1):316-324. doi: 10.1093/emph/eoac023. eCollection 2022.

Abstract

Background and objectives: Several studies have linked longer legs with favorable adult metabolic health outcomes and greater offspring birth weight. A recent Mendelian randomization study suggested a causal link between height and cardiometabolic risk; however, the underlying reasons remain poorly understood.

Methodology: Using a cross-sectional design, we tested in a convenience sample of 70 healthy young women whether birth weight and tibia length as markers of early-life conditions associated more strongly with metabolically beneficial traits like organ size and skeletal muscle mass (SMM) than a statistically derived height-residual variable indexing later, more canalized growth.

Results: Consistent with the 'developmental origins of health and disease' hypothesis, we found relatively strong associations of tibia length-but not birth weight-with adult organ size, brain size, SMM and resting energy expenditure measured by magnetic resonance imaging (MRI), dual-energy X-ray absorptiometry and indirect calorimetry, respectively.

Conclusions and implications: Building on prior work, these results suggest that leg length is a sensitive marker of traits directly impacting metabolic and reproductive health. Alongside findings in the same sample relating tibia length and height-residual to MRI-measured pelvic dimensions, we suggest there may exist a degree of coordination in the development of long bone, lean mass and pelvic traits, possibly centered on early, pre-pubertal growth periods. Such phenotypic coordination has important implications for fitness, serving to benefit both adult health and the health of offspring in subsequent generations.

Keywords: cardiometabolic risk; developmental origins of health and disease; lean mass; leg length.