Therapeutic restoring p53 function with small molecule for oncogene-driven non-small cell lung cancer by targeting serine 392 phosphorylation

Biochem Pharmacol. 2022 Sep:203:115188. doi: 10.1016/j.bcp.2022.115188. Epub 2022 Jul 25.

Abstract

p53 inactivation by disabling its function is a hallmark in lung carcinomas, emphasizing the significance of restoring p53 function as an attractive therapeutic strategy. However, the clinical efficacy of existing p53 activators is limited due to their inability to effectively activate p53 within the tumors. Here, we established a p53 activator screening assay in EGFR-driven lung cancer cells and identified a small molecular, MX-C4, as a promising candidate. Using high throughput compound screening and combination analyses, we found that MX-C4 effectively promoted the phosphorylation of p53 at serine-392 (s392). It exhibited potent antitumor activity in a variety of cancer cell lines, but only limited toxicity to NCI-H1299 (p53-null) and normal cell lines such as LX2 and HL-7702. Overexpression of p53 in NCI-H1299 cells by a p53 expressing virus vector sensitized cells to MX-C4 treatment, suggesting a p53-dependent anticancer activity. Furthermore, we demonstrated that MX-C4 bound to p53 and exerted its anticancer activity through cell cycle arrest at G2/M phase and apoptosis induction. Mechanistic study indicated that p53 activation regulated cell cycle and cell survival related targets at protein levels. Moreover, p53 activation raised phospho-p53 translocation to mitochondria and subsequently reorganized the Bcl-xl-Bak complex, thus conformationally activating Bak and inducing apoptosis. It is noteworthy that MX-C4 could effectively activate p53 within the tumors in EGFR-driven xenograft models, where tumor was significantly suppressed without obvious toxicity. Our study identified a promising candidate for lung cancer therapy by restoring p53 function.

Keywords: Drug screening; EGFR-driven; Lung cancer; P53 activation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Apoptosis
  • Carcinoma, Non-Small-Cell Lung* / drug therapy
  • Carcinoma, Non-Small-Cell Lung* / genetics
  • Carcinoma, Non-Small-Cell Lung* / pathology
  • Cell Line, Tumor
  • ErbB Receptors / genetics
  • ErbB Receptors / metabolism
  • Humans
  • Lung Neoplasms* / drug therapy
  • Lung Neoplasms* / genetics
  • Lung Neoplasms* / pathology
  • Oncogenes
  • Phosphorylation
  • Serine / metabolism
  • Tumor Suppressor Protein p53 / genetics
  • Tumor Suppressor Protein p53 / metabolism

Substances

  • Tumor Suppressor Protein p53
  • Serine
  • ErbB Receptors